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2011 MARS SCIENCE LABORATORY LAUNCH PERIOD DESIGN 

Fernando Abilleira* 

The Mars Science Laboratory mission, set to launch in the fall of 2011, has the 
primary objective of landing the most advanced rover to date to the surface of 
Mars to assess whether Mars ever was, or still is today, able to sustain carbon-
based life. Arriving at Mars in August 2012, the Mars Science Laboratory will 
also demonstrate the ability to deliver large payloads to the surface of Mars, land 
more accurately (than previous missions) in a 20-km by 25-km ellipse, and trav-
erse up to 20 km. Following guided entry and parachute deployment, the space-
craft will descend on a parachute and a Powered Descent Vehicle to safely land 
the rover on the surface of Mars. The launch/arrival strategy is driven by several 
key requirements, which include: launch vehicle capability, atmosphere-relative 
entry speed, communications coverage during Entry, Descent and Landing, lati-
tude accessibility, and dust storm season avoidance. Notable among these re-
quirements is maintaining a telecommunications link from atmospheric entry to 
landing plus one minute, via a Direct-To-Earth X-band link and via orbital as-
sets using an UHF link, to ensure that any failure during Entry, Descent and 
Landing can be reconstructed in case of a mission anomaly. Due to concerns re-
lated to the lifetime of the relay orbiters, two additional launch/arrival strategies 
have been developed to improve Entry, Descent, and Landing communications. 
This paper discusses the final launch/arrival strategy selected prior to the launch 
period down-selection that is scheduled to occur in August 2011. It is also im-
portant to note that this paper is an update to Ref. 1 in that it includes two new 
Type 1 launch periods and drops the Type 2 launch period that is no longer con-
sidered. 

INTRODUCTION 

The overall scientific goal of the Mars Science Laboratory (MSL) mission is to determine the planet’s 
habitability and continue the search for evidence of past or present life on Mars using the most advanced 
suite of instruments for scientific studies ever sent to the Red Planet. Besides assessing the biological po-
tential of the landing site and characterizing its geology, MSL will also take measurements of the surface 
radiation. The 900-kg MSL rover is five times as massive as the Mars Exploration Rovers (MER) launched 
in 2003 and is the first interplanetary mission to use guided entry to compensate for trajectory errors and 
atmospheric and aerodynamic dispersions in order to reduce the size of the landing error ellipse from 60 km 
(MER) to less than 25 km. The MSL rover pioneers the next generation of robotic systems capable of de-
livering the largest payloads to the surface of Mars.1  

 
The MSL spacecraft will be launched on an Atlas V 541 Expendable Evolved Launch Vehicle (EELV) 

from the Eastern Test Range at Cape Canaveral Air Force Station (CCAFS) in Florida during the 2011 
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 Nominal atmospheric entry flight path angle (EFPA) = –15.5 deg (inertial) 
 

The following guidelines were used as optimization criteria to determine the final launch/arrival 
strategy: 
 
 Enable EDL coverage via Mars Odyssey. 

o In the few cases in which enough flexibility exists so that all mission constraints are satis-
fied and various solutions exist, EDL coverage via Mars Odyssey may be taken into ac-
count in the launch period selection, but may not compromise EDL coverage via MRO. 

 Maintain MRO/ODY LMST nodes as close as possible to their nominal values. 
o Available MRO LMST nodes range between 3:00 PM and 1:45 PM. (LMST nodes at 

1:30 PM may also be possible but have not been fully analyzed by the MRO flight team.) 
o Available ODY LMST nodes range between 4:00 PM and 3:00 PM. 

 Minimize required number of target sets.  
o A target set is required when mission constraints cannot be satisfied simultaneously for 

all landing sites using the same launch/arrival dates. All target sets share the same launch 
days but may have different arrival dates. 

 Provide as many launch days as possible.  
 Keep arrival dates constant when possible. 

o Simplifies planning for surface mission operations. 
 Keep antenna angles as low as possible to enable higher telecom margins during EDL. 
 Arrive at Mars with Ls values as low as possible. 

 
Due to the characteristics of the arrival geometries in the 2011 Earth to Mars opportunity and the 

flight dynamics of the spacecraft during descent, EDL coverage has these limitations: 
 
 DTE coverage from entry to landing is not possible for all landing sites. 
 Simultaneous UHF coverage via Mars Odyssey (ODY) is desired for redundancy but is not possi-

ble for all launch days for some landing sites. 
 Dropouts in EDL communications are expected to occur between landing – 60 s and landing –

 20 s due to parachute and powered descent dynamics. 
 

Important navigation, trajectory correction maneuver, and orbit determination (OD) requirements relat-
ed to planetary protection, cruise TCM V and propellant requirements, and atmospheric entry deliv-
ery/knowledge accuracies are being satisfied but are not discussed in detail herein (see Cruise Section for 
additional details). 

 

Launch Period 

The three launch periods (referred to as Type 1A, Type 1B, and Type 1C) were developed to provide 
full MRO and ODY EDL communications coverage for landing latitudes between 25°N and 27°S. The 
launch periods differ primarily in terms of DTE communications coverage and the magnitude of change, if 
any, required for the orbiter LMST nodes. The Type 1A and Type 1B launch dates are bounded by atmos-
phere-relative entry speeds at the beginning of the launch period and by launch vehicle performance at the 
end of the launch period. The first launch day of the Type 1C launch period is the first launch day that 
meets the atmosphere-relative entry speed requirement and enables DTE coverage from entry to at least the 
end of the plasma attenuation period. The last launch day of the Type 1C launch period is bounded by 
launch vehicle performance. The arrival dates were selected based on the criteria described in the previous 
section. 

The Type 1A and Type 1B launch periods extend from November 25 through December 18, 2011 and 
each has a single target set which covers landing latitudes from 25°N to 27°S. The Type 1A launch period 
provides full MRO EDL coverage and is optimized to maximize DTE coverage at the cost of moving the 
ODY LMST node as early as 3:00 PM for Southern landing sites. Full ODY EDL coverage for Southern 
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  Table 2. Type 1B Launch Period Targets  

Table 3. Type 1C Launch Period Targets 

Launch
Day

Launch
Date

Arrival
Date

C3
(km2/s2)

DLA
(deg)

RLA
(deg)

Mawrth
Vallis 2

Gale
Crater

Eberswalde
Crater

Holden
Crater

1 11/25/2011 08/06/2012 10.785 -1.116 126.596 5.884 5.865 5.881 5.886

2 11/26/2011 08/06/2012 10.721 1.954 126.616 5.862 5.843 5.858 5.862

3 11/27/2011 08/06/2012 10.780 4.116 126.515 5.848 5.828 5.841 5.846

4 11/28/2011 08/06/2012 10.921 5.886 126.331 5.837 5.816 5.829 5.834

5 11/29/2011 08/06/2012 11.118 7.359 126.094 5.829 5.808 5.820 5.825

6 11/30/2011 08/06/2012 11.360 8.603 125.826 5.824 5.802 5.814 5.818

7 12/01/2011 08/06/2012 11.637 9.667 125.543 5.819 5.797 5.809 5.813

8 12/02/2011 08/06/2012 11.946 10.586 125.255 5.816 5.794 5.805 5.809

9 12/03/2011 08/06/2012 12.283 11.387 124.969 5.814 5.791 5.801 5.806

10 12/04/2011 08/06/2012 12.646 12.092 124.691 5.812 5.789 5.799 5.803

11 12/05/2011 08/06/2012 13.032 12.714 124.424 5.810 5.787 5.797 5.802

12 12/06/2011 08/06/2012 13.441 13.268 124.173 5.810 5.786 5.796 5.800

13 12/07/2011 08/06/2012 13.872 13.762 123.938 5.809 5.786 5.795 5.799

14 12/08/2011 08/06/2012 14.325 14.205 123.723 5.809 5.785 5.795 5.799

15 12/09/2011 08/06/2012 14.800 14.600 123.532 5.809 5.785 5.794 5.798

16 12/10/2011 08/06/2012 15.300 14.949 123.373 5.809 5.785 5.794 5.798

17 12/11/2011 08/06/2012 15.830 15.232 123.279 5.810 5.786 5.795 5.799

18 12/12/2011 08/06/2012 16.433 15.158 123.457 5.811 5.786 5.795 5.799

19 12/13/2011 08/06/2012 16.820 15.957 122.210 5.812 5.787 5.796 5.800

20 12/14/2011 08/06/2012 17.451 16.224 122.377 5.813 5.788 5.797 5.801

21 12/15/2011 08/06/2012 18.077 16.449 122.339 5.814 5.789 5.798 5.802

22 12/16/2011 08/06/2012 18.725 16.660 122.266 5.816 5.791 5.799 5.803

23 12/17/2011 08/06/2012 19.401 16.856 122.193 5.818 5.793 5.801 5.805

24 12/18/2011 08/06/2012 20.108 17.037 122.129 5.820 5.794 5.803 5.807

MAX 20.108 17.037 126.616 5.884 5.865 5.881 5.886
MIN 10.721 -1.116 122.129 5.809 5.785 5.794 5.798

Launch Targets
Type 1B Launch Period
EME2000 Coordinates^

Atmosphere-Relative Entry Speed^
(km/s)

Notes:
^ Maximum values across launch window.
- Biased, integrated launch targets based on Final Target Spec analysis

Launch
Day

Launch
Date

Arrival
Date

C3
(km2/s2)

DLA
(deg)

RLA
(deg)

Mawrth
Vallis 2

Gale
Crater

Eberswalde
Crater

Holden
Crater

1 11/29/2011 08/13/2012 12.951 -6.467 121.889 5.880 5.862 5.885 5.890

2 11/30/2011 08/13/2012 12.699 -3.263 122.214 5.842 5.824 5.845 5.850

3 12/01/2011 08/13/2012 12.639 -0.623 122.396 5.815 5.796 5.816 5.821

4 12/02/2011 08/13/2012 12.715 1.575 122.483 5.795 5.776 5.794 5.799

5 12/03/2011 08/13/2012 12.882 3.427 122.508 5.781 5.760 5.777 5.782

6 12/04/2011 08/13/2012 13.116 5.003 122.487 5.769 5.748 5.765 5.769

7 12/05/2011 08/13/2012 13.402 6.357 122.437 5.761 5.739 5.755 5.760

8 12/06/2011 08/13/2012 13.731 7.530 122.370 5.754 5.732 5.747 5.752

9 12/07/2011 08/13/2012 14.097 8.552 122.293 5.749 5.726 5.741 5.745

10 12/08/2011 08/13/2012 14.496 9.449 122.216 5.745 5.722 5.736 5.741

11 12/09/2011 08/12/2012 14.890 10.973 122.351 5.748 5.725 5.738 5.742

12 12/10/2011 08/12/2012 15.358 11.597 122.277 5.747 5.723 5.736 5.740

13 12/11/2011 08/11/2012 15.844 12.694 122.418 5.754 5.730 5.742 5.746

14 12/12/2011 08/11/2012 16.391 12.737 122.400 5.754 5.730 5.741 5.746

15 12/13/2011 08/10/2012 16.808 14.176 121.673 5.764 5.739 5.750 5.754

16 12/14/2011 08/10/2012 17.417 14.626 121.839 5.765 5.740 5.751 5.755

17 12/15/2011 08/09/2012 18.040 15.357 121.958 5.777 5.752 5.762 5.766

18 12/16/2011 08/09/2012 18.679 15.635 121.911 5.778 5.753 5.763 5.767

19 12/17/2011 08/08/2012 19.363 16.226 121.970 5.792 5.766 5.776 5.780

20 12/18/2011 08/08/2012 20.065 16.442 121.920 5.794 5.768 5.778 5.782

MAX 20.065 16.442 122.508 5.880 5.862 5.885 5.890
MIN 12.639 -6.861 121.673 5.745 5.722 5.736 5.740

Launch Targets
Type 1C Launch Period
EME2000 Coordinates^

Atmosphere-Relative Entry Speed^
(km/s)

Notes:
^ Maximum values across launch window.
- Biased, integrated launch targets based on Final Target Spec analysis

Formatted: Font: Bold

Formatted: Font: Bold
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Excess launch vehicle performance with respect to the optimal launch time determines the duration of 
the daily launch window The launch window duration for all launch periods extends from close to two 
hours at the beginning of each of the launch periods to ~40 min at the end of the launch periods. Figure 7 
shows the launch times for the three launch periods.  

Figure 7. Launch Window Duration 

To satisfy launch approval requirements when carrying an MMRTG, all launches must occur during 
daylight, which is defined to start at the beginning of morning civil twilight and end at the end of evening 
civil twilight.3 Morning civil twilight is defined to begin when the geometric center of the Sun is 6 below 
the horizon prior to sunrise; likewise, evening civil twilight is defined to end when the geometric center of 
the Sun is 6 below the horizon after sunset. This requirement is met by launching the spacecraft on a short 
coast trajectory. Coast times, times from MECO1 and MES2 range from 11 min to 31 min. Launch times 
for the three launch periods are shown in Figure 8. 

Spacecraft Separation Attitude 

A spacecraft separation attitude has been determined to provide adequate telecom and power margins 
for the spacecraft following separation by satisfying the following angular requirements4: (1) The angle 
between the spacecraft –Z-axis and the Sun must not exceed 67 deg from separation to separation plus 
15 days, (2) the angle between the spacecraft –Z-axis and each tracking station at station first rise must not 
exceed 79 deg, and (3) the angle between the spacecraft –Z-axis and Earth must not exceed 69 deg from 
separation plus 6 hours to separation plus 15 days. The selected spacecraft separation attitude for the space-
craft –Z-axis (same as Centaur –XB axis) in the EME2000 coordinate systems is as follows: 

Declination:      12.00 deg 
Right Ascension:   243.50 deg  
  

Initial Acquisition  

Prior to separation from the launch vehicle, telemetry data from the MSL spacecraft will be transmitted 
to ground stations through the Centaur upper stage, which downlinks the data using the S-band telemetry 
system via the Tracking and Data Relay Satellite System (TDRSS). Once the spacecraft has separated from 
the Centaur, the goal is to establish a two-way coherent communication link via the Deep Space Network 
(DSN) within one hour of separation to generate orbit determination solutions that are used to deliver tra-
jectory predicts for the second DSN pass. DSN initial acquisition always occurs at Canberra; however, a 
tracking gap between spacecraft separation and DSN station rise exists. This gap has two main compo-
nents: a spacecraft transmission delay of six minutes after separation and a tracking coverage gap which 
may be as long as 20 min from separation to DSN station rise. In order to close this tracking gap, Perth and 
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New Norcia (ESA), Dongara (USN), and Mauritius (ISRO) tracking stations will be listening for the space-
craft signal and record data in open loop5. 
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For any launch date and landing site, there is a range of relay orbiter LMST nodes that would place the 
orbit in the correct geometry in order to support EDL communications. The launch period design process 
evaluated the nominal nodes for both MRO (3:00 PM, ascending) and ODY (4:00 PM, descending) to de-
termine whether the orbiters would have EDL communications coverage across all latitude bands for all 
launch days. When this goal could not be met, the latest LMST node (closest to the nominal) that would 
provide EDL coverage was determined. Keeping the LMST node of the orbiters as close as possible to their 
nominal values decreases the propellant usage of the orbiters, thereby potentially increasing their lifetimes 
and decreasing the impact on the orbiters’ science return. Tables 4 through 7 show the latest required MRO 
and ODY nodes for the three launch periods along with DTE coverage availability.  

Table 4. EDL Coverage for Type 1A Launch Period 

 

Preliminary analysis shows that the most effective way for the orbiters to achieve the required LMST 
node is to execute a maneuver to change the orbit inclination that would start a nodal drift. Once the target 
LMST node has been achieved, another maneuver would be executed in order to stop the nodal drift. The 
more time that is allowed for the node to drift, the less propellant is required. Since the required LMST 
node is a function of launch day and landing site, the orbiter's nodal drift will not be started until after MSL 
launches.  

 

MRO ODY DTE MRO ODY DTE MRO ODY DTE MRO ODY DTE
25-Nov-2011 4:00 PM 3:45 PM ^ 3:45 PM
26-Nov-2011
27-Nov-2011
28-Nov-2011 3:40 PM 3:30 PM 3:30 PM
29-Nov-2011 3:55 PM 3:30 PM 3:20 PM 3:20 PM
30-Nov-2011 3:45 PM 3:20 PM 3:15 PM 3:15 PM
01-Dec-2011 3:05 PM 3:05 PM
02-Dec-2011 3:00 PM 3:00 PM
03-Dec-2011 2:45 PM 3:00 PM*
04-Dec-2011 2:40 PM
05-Dec-2011 3:20 PM
06-Dec-2011 3:25 PM
07-Dec-2011
08-Dec-2011
09-Dec-2011
10-Dec-2011
11-Dec-2011
12-Dec-2011
13-Dec-2011
14-Dec-2011
15-Dec-2011
16-Dec-2011
17-Dec-2011
18-Dec-2011

* Available Mean Anomaly range for full EDL coverage is less than orbiter's phasing control of  +/- 1.6 deg
^ Coverage extends from Entry to Entry + ~83 s (end of  plasma is located at Entry + 90 s)
^^ For days 1, 2, and 3 coverage extends from Entry to Entry + ~77 s, ~83 s, and ~87 s respectively (end of  plasma is located at Entry + 90 s)

2:50 PM

3:40 PM 3:10 PM

2:45 PM

2:40 PM
2:40 PM

2:35 PM 2:35 PM

2:45 PM

2:55 PM 3:00 PM

3:00 PM* 3:00 PM*

3:30 PM

3:05 PM
3:35 PM

Full EDL

2:55 PM 3:30 PM 3:05 PM

Entry to 
~Chute 

Deploy or 
Longer

Entry to 
~Chute 

Deploy or 
Longer

3:15 PM
3:00 PM* < 3:00 PM

Entry to 
~Start of  
Plasma^^

3:45 PM 3:35 PM
Entry to 
~End of  
Plasma

3:35 PM

Entry to 
~End of  
Plasma or 
Longer

Entry to 
~Chute 

Deploy or 
Longer

3:00 PM
3:00 PM

< 3:00 PM

2:55 PM

2:55 PM
2:50 PM

Type 1A Launch Period

Mawrth Vallis Site 2
(23.99°N)

Gale Crater
(4.49°S)

Eberswalde Crater
(23.90°S)

Holden Crater
(26.40°S)

3:00 PM
4:00 PM

Entry to 
~Chute 

Deploy or 
Longer

3:00 PM
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Table 5. EDL Coverage for Type 1B Launch Period 

 

Table 6. EDL Coverage for Type 1C Launch Period 

 

In addition to the required LMST node, a range of mean anomalies at MSL entry for MRO and/or ODY 
must exist such that all the EDL coverage constraints mentioned earlier are satisfied. This range of mean 
anomalies defines the orbital phasings from which MRO or ODY could provide full EDL coverage. The 

MRO ODY DTE MRO ODY DTE MRO ODY DTE MRO ODY DTE
25-Nov-2011
26-Nov-2011
27-Nov-2011
28-Nov-2011
29-Nov-2011
30-Nov-2011
01-Dec-2011
02-Dec-2011
03-Dec-2011
04-Dec-2011
05-Dec-2011
06-Dec-2011
07-Dec-2011
08-Dec-2011
09-Dec-2011
10-Dec-2011
11-Dec-2011
12-Dec-2011
13-Dec-2011
14-Dec-2011
15-Dec-2011
16-Dec-2011
17-Dec-2011
18-Dec-2011 3:55 PM
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Entry Segment. 

After the spacecraft reaches entry interface, the Entry segment begins.  The major events that hap-
pen during this segment include: 

1. The Reaction Control System (RCS) propulsion system required to achieve the desired control au-
thority for bank reversals is pressurized. 

2. Entry guidance becomes active, controlling the lift vector direction to achieve the desired down-
range and cross range target. 

3. Just prior to parachute deploy, the entry center of mass offset is eliminated by ejecting the six 
25-kg Entry Balance Masses (EBMs). At the same time, the vehicle rolls to favorably point the 
Terminal Descent Sensor (TDS) toward the ground. This maneuver is known as the Straighten Up 
and Fly Right maneuver (SUFR) or ”Victory” Roll. 

 

Peak aeroheating and deceleration are experienced during the Entry segment. Once flight conditions 
are within the supersonic parachute deploy envelope, the command for parachute deploy is issued, end-
ing the Entry segment.  This occurs at about E + 270 s.  During EDL, the spacecraft transmits both DTE 
tones and UHF telemetry.  Telecom performance for the received signal at Earth and/or relay assets de-
pends upon the launch date and the selected landing site.  

Parachute Descent Segment. 

The parachute descent segment enables the spacecraft to prepare for powered descent and determine 
the time at which to initiate powered descent.  The parachute descent segment begins with the execution 
of the parachute deployment trigger.  Major events that occur during this segment include: 

1. Parachute deployment (between Mach 1.8 and Mach 2.2) and full inflation about 2 s later. 

2. Rate damping to eliminate wrist mode oscillations.  The wrist mode management begins about 10 s 
after the parachute deploy trigger occurs. 

3. Heat shield jettison occurring between Mach 0.5 and Mach 0.8.  The jettison of the heat shield al-
lows the Terminal Descent Sensor (TDS) to start acquiring data. 

4. TDS surface acquisition begins providing altitude and velocity measurements to update the navi-
gated state.  Once altitude solutions are reached, surface relative navigation begins. 

5. Mars Landing Engine (MLE) priming to allow fuel flow through MLEs. 

The command to jettison the backshell and parachute occurs between 1.5 and 2.0 km above ground 
level and at a velocity near 100 m/s as measured by the TDS, which ends the parachute descent seg-
ment.  

Powered Descent Segment. 

The powered descent segment begins at backshell separation.  During powered descent, propulsive 
control is provided by actuation of eight independently throttleable MLEs mounted on the descent 
stage.  Four sub-segments in the powered descent sequence include: 

1. Powered approach: Divert maneuver for backshell avoidance.  This sub-segment also brings the 
Powered Descent Vehicle (PDV) to vertical flight at a descent rate of 20 m/s.  

2. Constant velocity accordion: Adjusts for 50 m altitude error at backshell separation.   
3. Constant deceleration: Slows skycrane to a vertical velocity of 0.75 m/s for starting the sky crane 

segment.  The descent stage maintains this vertical descent rate throughout the sky crane segment 
(except during the final 0.25 s when the descent stage slows to 0 m/s in preparation for flyaway). 

4. Throttle down: Throttle down the four “inboard” MLEs to near shutdown (1%) while keeping the 
four remaining MLEs to function in the more efficient range of 50% throttle.  
 

The powered descent segment ends at the command for rover separation from the descent stage.
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Sky Crane Segment. 

The sky crane segment begins when the command for rover separation is issued by the GNC mode 
commander.  This occurs at an altitude of approximately 18.6 m.  The events that occur in this segment 
include: 

1. Rover is lowered on a Descent Rate Limiter (DRL) and Bridle Umbilical Device (BUD) combina-
tion to 7.5 m below the descent stage.  A multi-conductor umbilical cable also connects the descent 
stage to the rover, allowing communication between the descent stage and rover computers and the 
use of the UHF antenna mounted on the descent stage. 

2. Rover mobility system is deployed into the touchdown configuration while the rover is being low-
ered on the BUD. 

3. Touchdown logic is enabled 9 s after the rover separates from the descent stage (still connected via 
the DRL and BUD). 

4. The descent stage continues descent until a post-touchdown state is detected. 
 

For touchdown detection, a check is made to determine if the commanded thrust profile is flat.  If 
the thrust profile is sufficiently flat, then another check is made to determine if the mean throttle setting 
is below the prescribed touchdown threshold.  Once this throttle down is detected and passes a persis-
tence check, the descent stage computer instructs the rover to cut the DRL and BUD.  The bridle cut 
command ends the sky crane segment.   

Fly Away Segment. 

After touchdown is declared, transition to flyaway begins.  Flyaway is performed using the flyaway 
controller executing on the descent stage processor (SPARC) in the Descent Motor Control Assembly 
(DMCA) on the descent stage.  The following events occur after touchdown is declared: 

1. Descent stage slows down to 0 m/s. 
2. Controlled transferred from Rover Compute Element (RCE) to DMCA. 
3. Bridle and electrical umbilical are cut. 

 

Once the bridle and electrical umbilical are cut, the flyaway controller exhibits three phases: 

1. Hover – Used for the period of time required to cut the electrical umbilical between the rover and 
the descent stage. 

2. Ascent – To maintain MLE plume ground pressure below landing pressure, the descent stage trav-
els straight up. 

3. Turn and Burn – Two of the MLE engines are brought to 100% while the other two engines are at 
slightly less than 100%, causing the descent stage to pitch about the descent stage Y-axis to 45°.  
Once the turn duration is complete, all four engines are brought to 100% with the controller mak-
ing adjustments for maintaining zero attitude rates.  Constant thrust is applied for enough time to 
ensure that the descent stage will impact the surface at least 150 m from the rover’s position. 

 

The flyaway segment and the EDL phase end when all flight system components have zero kinetic en-
ergy. 

MSL Telecom System Description 

Throughout the EDL phase, each telecom antenna is used with the exception of the X-band antennas 
(High Gain Antenna (HGA) and Rover Low Gain Antenna (RLGA)) on the rover. The EDL timeline com-
mands transition between the antenna paths, and directs the system to switch data processing as needed to 
coordinate with those antenna transitions. Figure 15 identifies the locations of the antennas onboard the 
spacecraft. 

EDL communications start with an initial configuration of direct-to-Earth (DTE) X-band telemetry at 
500 bps via the Medium Gain Antenna (MGA). Prior to cruise stage separation, EDL communications tran-
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CONCLUSIONS 

This paper has summarized the final Mars Science Laboratory launch/arrival strategy and demonstrated 
that all mission design requirements and constraints can be achieved. The MSL launch/arrival strategy con-
sists of two 24-day launch periods and one 20-day launch period that provide EDL communications for 
landing latitudes between 25°N and 27°S via at least two of the following assets: Direct-To-Earth (DTE) 
using an X-band link, Mars Reconnaissance Orbiter (MRO) and Mars Odyssey (ODY) using an UHF link. 
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